Extended ant colony optimization for non-convex mixed integer nonlinear programming
نویسندگان
چکیده
منابع مشابه
Extended ant colony optimization for non-convex mixed integer nonlinear programming
Two novel extensions for the well known Ant Colony Optimization (ACO) framework are introduced here, which allow the solution of Mixed Integer Nonlinear Programs (MINLP). Furthermore, a hybrid implementation (ACOmi) based on this extended ACO framework, specially developed for complex non-convex MINLPs, is presented together with numerical results. These extensions on the ACO framework have bee...
متن کاملExtended Formulations in Mixed-Integer Convex Programming
We present a unifying framework for generating extended formulations for the polyhedral outer approximations used in algorithms for mixed-integer convex programming (MICP). Extended formulations lead to fewer iterations of outer approximation algorithms and generally faster solution times. First, we observe that all MICP instances from the MINLPLIB2 benchmark library are conic representable wit...
متن کاملNon-convex mixed-integer nonlinear programming: A survey
A wide range of problems arising in practical applications can be formulated as Mixed-Integer Nonlinear Programs (MINLPs). For the case in which the objective and constraint functions are convex, some quite effective exact and heuristic algorithms are available. When nonconvexities are present, however, things become much more difficult, since then even the continuous relaxation is a global opt...
متن کاملUnbounded convex sets for non-convex mixed-integer quadratic programming
This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a set in the family. Some fundamental properties of the convex sets are derived, along with connections to some o...
متن کاملSemidefinite relaxations for non-convex quadratic mixed-integer programming
We present semidefinite relaxations for unconstrained nonconvex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for mediumsized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computers & Operations Research
سال: 2009
ISSN: 0305-0548
DOI: 10.1016/j.cor.2008.08.015